LESSON 4.4c

Factor Theorem

Today you will:

- Use a special case of the Polynomial Remainder Theorem to factor polynomials
- Practice using English to describe math processes and equations

Prior Vocabulary:

- Factor
 - A factor of a number is a 2nd number that divides evenly into the 1st number (has a remainder of zero)
 - A factor of a polynomial is a 2nd polynomial that divides evenly into the 1st polynomial (has remainder zero).
- Polynomial Remainder Theorem, p. 176 (from lesson 4.3c)
 - To evaluate f(x) when x = a and find f(a) ... use synthetic division with k = a ... the remainder is f(a).
- Remember...
 - When we *solve* a function or polynomial we are setting it equal to zero and finding its roots.
 - In other words we are finding its zeros, i.e. where the function f(x) = 0... where it has a zero remainder.
 - What if we use the Polynomial Remainder Theorem and find that the remainder is zero? We have something that divides evenly into the polynomial ... we have found a factor of the polynomial!

Core Vocabulary: Factor Theorem

A polynomial f(x) has a factor x - a if and only if f(a) = 0 ... i.e. if and only if a is a zero of f(x) ...this is a special application of the Polynomial Remainder Theorem.

How do we use this?

To tell if x - a is a factor of f(x), use synthetic division with k = a.

• if the remainder is zero, (x - a) is a factor.

Don't forget, if it is easier you can just evaluate f(a) ... plug a into the function

• if f(a) = 0, (x - a) is a factor.

Determine whether (a) x - 2 is a factor of $f(x) = x^2 + 2x - 4$ and (b) x + 5 is a factor of $f(x) = 3x^4 + 15x^3 - x^2 + 25$.

SOLUTION

....f(*x*) is pretty simple...

a. Find *f*(2) by direct substitution.

STUDY TIP In part (b), notice that direct substitution would have resulted in more difficult computations than synthetic division.

 $f(2) = 2^2 + 2(2) - 4$ = 4 + 4 - 4

= 4

b. Find f(-5) by synthetic division.

5	3	15	-1	0	25
		-15	0	5	-25
	3	0	—1	5	0

Because $f(2) \neq 0$, the binomial x - 2 is not a factor of $f(x) = x^2 + 2x - 4$. Because f(-5) = 0, the binomial x + 5 is a factor of $f(x) = 3x^4 + 15x^3 - x^2 + 25$. Show that x + 3 is a factor of $f(x) = x^4 + 3x^3 - x - 3$. Then factor f(x) completely. SOLUTION

Show that f(-3) = 0 by synthetic division.

-3	1	3	0	-1	-3
		-3	0	0	3
	1	0	0	-1	0

ANOTHER WAY

Notice that you can factor

f(x) by grouping. $f(x) = x^{3}(x + 3) - 1(x + 3)$ $= (x^{3} - 1)(x + 3)$ $= (x + 3)(x - 1) \cdot (x^{2} + x + 1)$

Because f(-3) = 0, you can conclude that x + 3 is a factor of f(x) by the Factor Theorem. Use the result to write f(x) as a product of two factors and then factor completely.

$$f(x) = x^4 + 3x^3 - x - 3$$
Write original polynomial. $= (x + 3)(x^3 - 1)$ Write as a product of two factors. $= (x + 3)(x - 1)(x^2 + x + 1)$ Difference of Two Cubes Pattern

Determine if x - 4 is a factor of $f(x) = 2x^2 + 5x - 12$. If so, factor f(x) completely. SOLUTION

Determine if f(4) = 0 by synthetic division.

Because f(4) = 40, you can conclude that x - 4 is NOT a factor of f(x) by the Factor Theorem.

Determine if x - 6 is a factor of $f(x) = x^3 - 5x^2 - 6x$. If so, factor f(x) completely. SOLUTION

Show that f(6) = 0 by synthetic division.

Because f(6) = 0, you can conclude that x - 6 is a factor of f(x) by the Factor Theorem. Use the result to write f(x) as a product of two factors and then factor completely.

$$f(x) = (x - 6) (x^{2} + x)$$

= (x - 6) · x(x + 1)
= x(x - 6)(x + 1)

Write original polynomial. Distributive property. Reorder...commutative property.

Homework

Pg 184, #39-54